A CD33-Deleted Allograft (Trem-cel) Enables Post-Hematopoietic Cell Transplant (HCT) Maintenance Dosing of Gemtuzumab Ozogamicin (GO) with Therapeutic Levels of Drug Exposure and Low Hematologic and Hepatic Toxicity in Patients with High-Risk Acute Myeloid Leukemia (AML) John F DiPersio¹, Guenther Koehne² Nirali N Shah³, Léa Bernard⁴, Hyung C Suh⁵, Divya Koura⁶, Miguel-Angel Perales⁷, Roni Tamari⁷, Muhammad U Mushtaq⁸, Joseph Maakaron⁹, Michael Loken¹⁰, Darren Stanizzi¹¹, Melissa Lee-Sundlov¹¹, Sanjana Thosar¹¹, Sharon L Hyzy¹¹,

Glen D Raffel¹¹, and Brenda W Cooper¹²

1 Setice, 1 Setice, 1 Setice, 1 Setice, 2 Setice, 2 Setice, 2 Setice, 2 Setice, 3 Setice, 3 Setice, 2 S ⁵John Theurer Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, Westwood, KS, John Theurer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Cancer Center, New York, NY, USA; Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas Ce USA; ⁹Division of Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult Hematologics, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult, Seattle, WA, USA; ¹¹Vor Biopharma, Cambridge, MA; ¹²Adult, Seattle, S

Background & Methods

Relapse is the leading cause of death for patients undergoing allogeneic HCT for AML. Strategies to reduce relapse includir leukemia-directed maintenance therapies post-HCT have been largely ineffective. GO (Mylotarg[™]) is an anti-CD33 antibodydrug conjugate approved for use in AML, but its use has been limited by hepatotoxicity and on-target, off-tumor hematopoietic toxicity toward CD33+ normal blood cells leading to severe cytopenias, especially post-HCT. Tremtelectogene empogeditemcel (trem-cel; formerly VOR33) is a hematopoietic stem and progenitor cell product manufactured from CD34+ cells from a matched donor and CRISPR/Cas9 gene-edited to delete CD33. Trem-cel was developed to shield normal hematopoietic cells from CD33-directed therapies and allow exclusive targeting of residual CD33+ leukemia.

VBP101 (NCT04849910) is a Phase 1/2 multicenter trial to establish the safety of using trem-cel as an allograft followed by GO maintenance therapy for patients with CD33+ AML or MDS who are at high risk of relapse and undergoing HCT. Patients (18-70 y) must have CD33+ AML/MDS with high-risk features for relapse, such as adverse-risk cytogenetics or measurable residual disease, and an 8/8 HLA-matched related or unrelated donor. Trem-cel is manufactured from donor CD34+ cells isolated from G-CSF/Plerixafor-mobilized peripheral blood. Patients undergo busulfan- or TBI-based myeloablative conditioning with rATG prior to HCT with trem-cel. After ~60 days post-HCT patients begin maintenance therapy with GO in a 3+3 dose escalation strategy with cohorts of 0.5, 1 and 2 mg/m2. GO is dosed at a planned 28 days between cycles for 4-8 cycles. Relapsed patients could receive subsequent therapies including VCAR33 (a donor-derived CD33 CAR-T, NCT05984199).

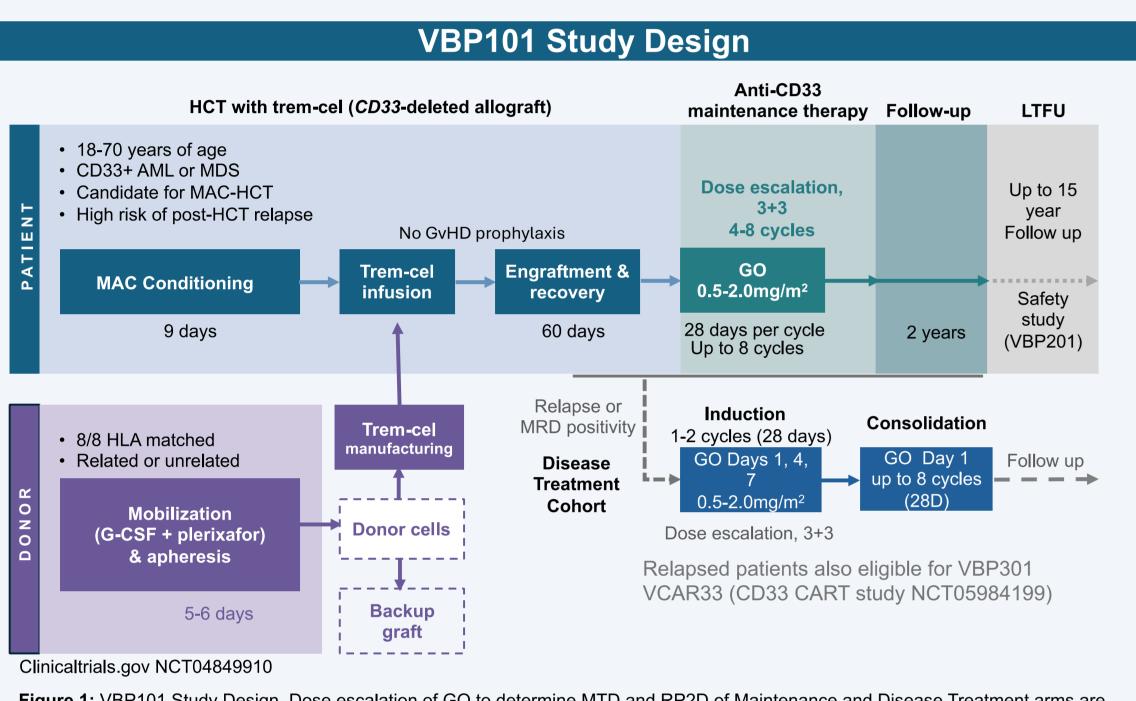
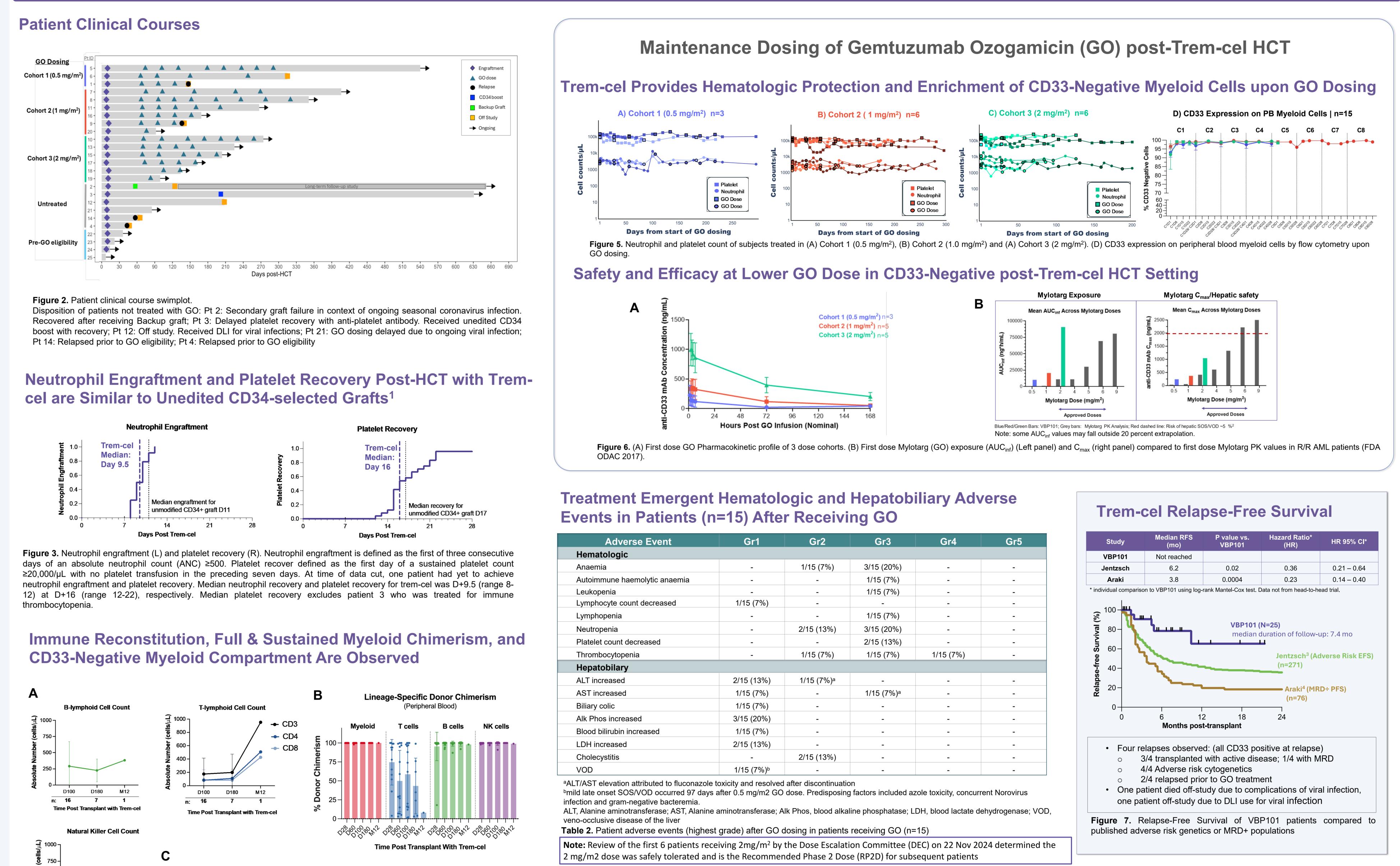


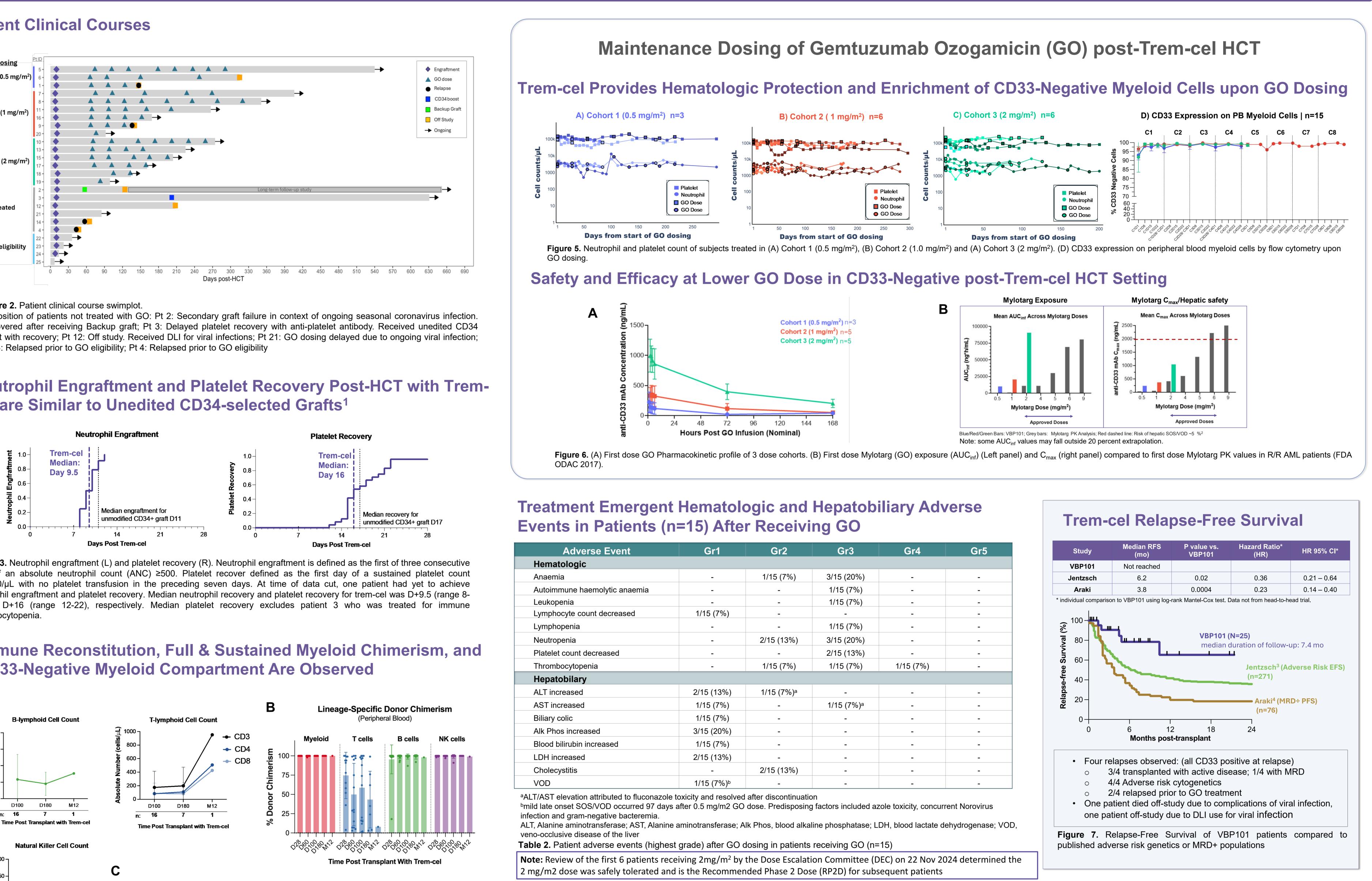
Figure 1: VBP101 Study Design. Dose escalation of GO to determine MTD and RP2D of Maintenance and Disease Treatment arms are independently escalated using a 3+3 strategy

Figure 1. VBP101 Study Design. Dose escalation of GO to determine MTD and RP2D of Maintenance and Disease Treatment arms are independently escalated using a 3+3 strategy.

Patient Demographics, Graft Characteristics, Disease **Characteristics, and Baseline Risk Factors**

Patient Demography (n=25)		Disease Characteristics	
Age (years)	59 (22 – 68)	Cytogenetics Risk ELN 2022 ((AML) n=24
Sex		Favorable	2 (8%)
Female	14 (56%)	Intermediate	8 (33%)
Male	11 (44%)	Adverse	14 (56%)
Weight (kg)	72.6 (47.9 – 120.7)	IPSS-R System (MDS) n=1	
Primary Disease Diagnosis			1 (100%)
AML	24 (96%)	Very High	1 (100%)
MDS	1 (4%)	Other AML Risk Factors n=2	4
Trem-cel & Treatment Characteristics		TP53 mutation	8 (33%)
		Secondary AML ^b	10 (42%)
Trem-cel Cell Dose (x10 ⁶ CD34+ cells/kg)	8.11 (2.62 – 12.44)	^b Defined as AML-MRC: AML with myelodysplasia-related change (9/24) or therapy-related (1/24)	
Editing Efficiency	90% (71-94)	Disease Burden Status N=25	5
Donor Type (min 8/8 match)		Remission (MRD neg)	18 (72%)
Unrelated	19 (76%)	MRD+ (>0.1% to <5% blast by flow)	4 (16%) blast % range: 0.5% -3.6%
Related	6 (24%)	Active Disease (≥5% blast) 3 (12%)	3 (12%)
10/10 match	25 (100%)		blast % range: 8% - 78%
Myeloablative Condition	ning Regimen	AML/MDS Disease Status N=	
Busulfan/ Melphalan/	22 (88%) ^a	Primary induction failure	2 (8%)
Fludarabine/rATG		CR1	16 (64%)
TBI/Cyclophosphamide/ Thiotepa/ rATG	3 (12%)	CR2	6 (24%)
^a One patient received equine ATG		Relapsed or refractory	1 (4%)


Values are median (range) or n (%)


Table 1. Patient Demographics, Graft Characteristics, Disease Characteristics, and Baseline Factors

References

¹Luznik L. et al. J Clin Oncol 2022, 40 (4); ²Mylotarg ODAC 2017; ³Jentzsch M. et al. Blood Cancer J 2022; 12 (170); ⁴Araki D. et al. J Clin Oncol 2016, 34(4) ⁵Goldberg et al Leuk and Lymph 58 (217); ⁶Llaurador et al. Transplantation and Cellular Therapy 27 (2021); ⁷O'Reilly et al Biol Blood Marrow Transplant 26 (2020)

Data compiled from EDC, Lab Reports and Pl/site reports, Pending full source data verification. Data cutoff 01Nov2024.

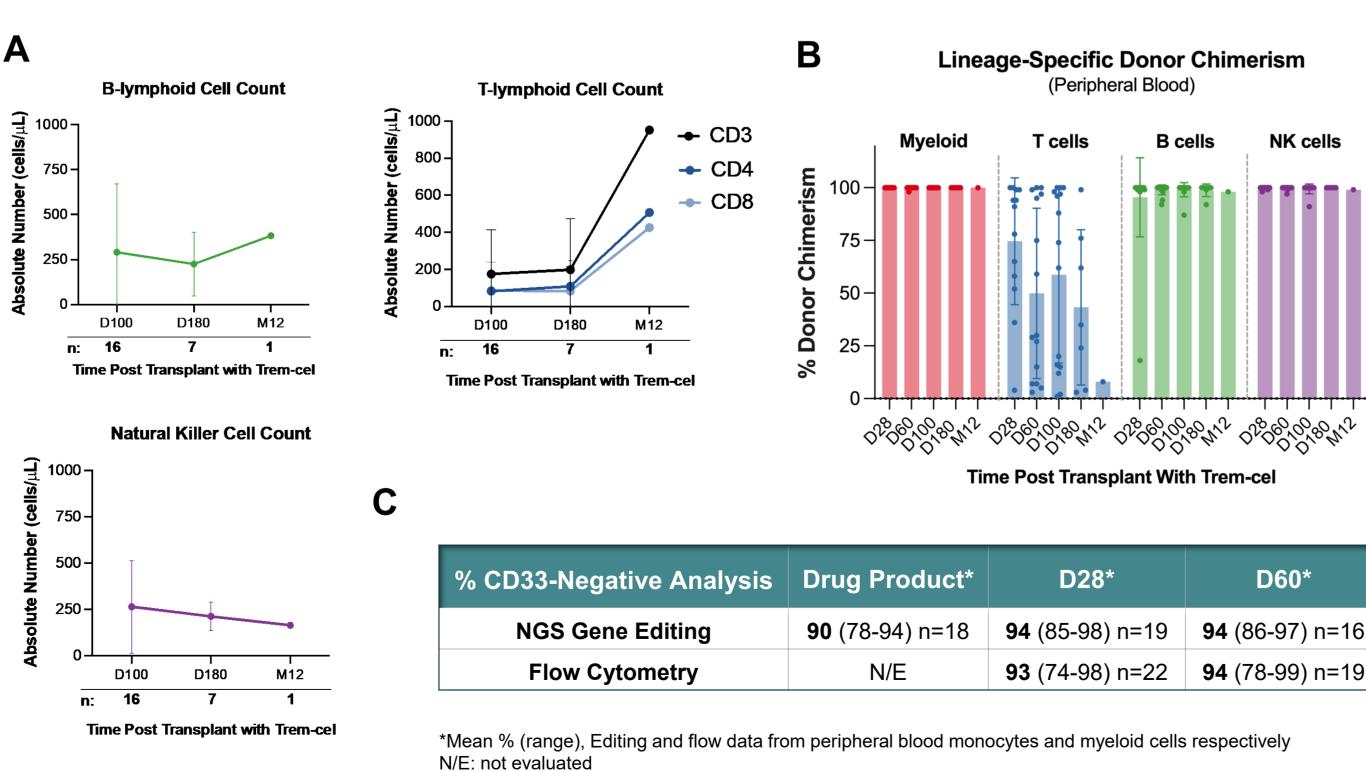


Figure 4. (A) Immune Reconstitution (B) Multi-lineage Donor Chimerism (C) CD33-negative myeloid reconstitution via NGS gene editing and flow cytometry at days 28 and 60 post-HCT.

Results

Patients transplanted with trem-cel on VBP101 show:

- grafts, consistent with CD33 being dispensable for engraftment and hematopoiesis.
- Recommended Phase 2 Dose.
- Immune reconstitution and multilineage chimerism consistent with unedited CD34-selected grafts.⁵⁻⁷
- in C_{max} , correlated with hepatotoxicity, compared to corresponding GO doses in R/R AML patients.
- Preliminary data suggesting improved RFS compared to standard HCT of AML high-relapse risk groups.

D60*
94 (86-97) n=16
94 (78-99) n=19

Gr4	Gr5
Gr4	Gro
-	-
-	-
-	
	_
-	-
-	-
1/15 (7%)	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
-	-
oxicity, concur	rent Norovirus
lood lactate d	ehydrogenase; VO[

Conclusions

Primary neutrophil engraftment and platelet recovery and full donor myeloid chimerism similar to patients who received non-edited CD34 selected

Protection from deep and prolonged cytopenias during repeated 0.5, 1, and 2 mg/m2 GO doses. Dose Escalation Committee confirmed 2 mg/m2 as

Broadened therapeutic index for GO following trem-cel as demonstrated by increased AUC, correlated with efficacy, and proportionally lower increase